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Abstract

This work proposes a method that combines machine
learning and signal processing to detect and classify car-
diac arrhythmias in ECG signals, using the MIT-BIH Ar-
rhythmia dataset. The methodology includes preprocess-
ing to eliminate atypical morphologies and accelerated
rhythms, inconsistencies often overlooked in previous stud-
ies that can lead to feature overlap and compromise model
accuracy, asymmetric 600 ms segmentation centered on the
R peak to capture the features of the P, QRS, and T waves,
and classification of 10 types of arrhythmias, covering a
broader and more challenging scenario compared to stud-
ies that usually consider only 4 to 5 classes. The model
achieved high performance, with 99.40% accuracy and
precision and 99.32% recall. The Grad-CAM technique
was applied to confirm that the model focuses on clinically
relevant regions of the ECG, increasing interpretability and
clinical confidence.

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause
of death worldwide, accounting for 17.9 million deaths in
2019, and for 32% of global deaths. Most cases occur in
low- and middle-income countries, and 85% of deaths are
related to heart attacks and strokes. Many of these deaths
can be prevented by reducing risk factors such as smoking,
unhealthy diet, and physical inactivity. Early detection and
appropriate treatment are essential to reduce CVD mortality
[1]. Rajpurkar et al. [2] report that manual analysis of these
signals is complex and error-prone, especially in continuous
monitoring. Automated arrhythmia detection systems have
emerged as a promising approach to improve diagnostic
accuracy and reduce response time.

Acharya et al. [3] developed a 9-layer deep convolu-
tional neural network (CNN) to automatically classify five
categories of cardiac segments from 260 samples in ECG
signals. The model was trained on raw data processed to
remove noise, as well as an artificially augmented set to bal-

ance the classes. In the testing, CNN achieved an accuracy
of 94.03% on raw ECGs and 93.47% on noise-free signals,
while with unbalanced data, the accuracy dropped to ap-
proximately 89%. These results demonstrate the potential
of CNN as an auxiliary tool in the detection of automatic
arrhythmias. Zhou et al. [4] proposed a hybrid method
that combines convolutional neural networks (CNN) with
extreme learning machines (ELM) for the automatic classi-
fication of four classes of arrhythmias in ECG signals. The
approach aims to mitigate the challenges caused by noise
and poor signal quality, improving accuracy in the diagno-
sis of arrhythmias. The methodology includes segmenting
the signal around the R peak of the QRS wave with 250
samples, ensuring a more accurate analysis of the heartbeat.
The experiments demonstrated that the model achieved an
accuracy rate of 98.77%, which demonstrates high general-
izability for different data sets. Ahmed et al. [5] proposed
a 1D-CNN architecture for the automatic classification of
four types of cardiac arrhythmias, using signals from the
MIT-BIH database previously processed for noise reduc-
tion. The methodology involved the extraction of beats from
ECG lead II, applying normalization and segmentation in
180-sample windows centered on R-peak detection. The
model achieved excellent performance, with 100% accu-
racy in training and 99.0% accuracy in testing, standing out
as an efficient and promising alternative for automated ar-
rhythmia diagnosis. This study proposes a robust model for
automatic classification of cardiac arrhythmias, combining
pre-processing, non-peak centered asymmetric segmenta-
tion R and deep 1D-CNN. The model adjusts segmentation
to capture specific morphologies and uses Grad-CAM to
visually highlight relevant ECG regions, increasing inter-
pretability and clinical confidence.

2. Methodology

2.1. Database Processing

The MIT-BIH Arrhythmia Dataset [6] was used. This
dataset contains 48 ECG recordings (30 minutes each, sam-
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ple rate of 360 Hz) from 47 patients, with manual annota-
tions of arrhythmias by specialists. This dataset was chosen
for its reliability, diversity and recognition as a benchmark
in signal processing and machine learning. In the prepro-
cessing phase, illustrated in Figure 1, we identified, for
each record, the leads present in the MIT-BIH Arrhythmia
dataset, selecting exclusively records with MLII, the gold
standard for arrhythmia analysis.

Figure 1: Steps of data preprocessing.

The last block in Figure 2, aims to eliminate records
with atypical morphologies or accelerated cardiac rhythms.
Atypical morphologies were observed in classes NB, LBBB,
RBBB and PAC, even within the same derivation(MLII).
Another atypical condition identified was the presence of
short RR intervals and multiform PVCs. Figure 2 illustrates
these problems in records 111, 108, 124, and especially in
207, which has the highest number of atypical conditions
between LBBB, RBBB, PAC and PVC classes.

Figure 2: Classes with atypical morphologies (a) LBBB,
(b) NB, (c) RBBB and (d) PAC and PVC. In Figure (d)
the multiple PVC morphologies and short RR intervals are
evidenced in record 207.

Figure 2(a) presents a standard LBBB class(MLII, record
109) and atypical morphology (records 207 and 111). Fig-
ure 2(b) shows a standard NB class(MLII, record 100) with
atypical morphology (record 108), while Figure 2(c) shows
a standard RBBB class (MLII, record 118) and atypical
morphology (record 124). Figure 2(d) presents a standard
PAC class(MLII, record 232) with atypical morphology in
record 207, which also presents short RRs and multiple
PVC morphologies.

2.2. Segmentation and Normalization

The use of pre-existing annotations from the MIT-BIH
arrhythmia dataset, which provide the exact positions of
the R peaks, significantly simplifies the segmentation pro-
cess. According to Malmivuo [7], the full duration of car-
diac events is 600 ms. Based on this description, the ECG
signals were divided into 600 ms segments (216 samples
corresponding to a sampling rate of 360 Hz), centered on
the R peaks, with asymmetric windows of 212.5 ms (76.5
samples) before the R peak and 387.5 ms (139.5 samples)
after the R peak. This asymmetric window, which differs
from previous studies that used shorter or longer windows,
was designed to ensure the complete capture of the mor-
phological features of the P wave, QRS complex, and T
wave. As illustrated in Figure 3, this approach provides
a physiologically consistent representation of the signal,
allowing for more accurate arrhythmia classification.

Figure 3: Unnormalized generated segment.

As demonstrated by [8], data normalization is essential
in pattern recognition, whether supervised or unsupervised
learning is employed. This work used min-max normaliza-
tion to reduce amplitude variations, preserving morphologi-
cal characteristics, as illustrated in the process in Figure 4.
To ensure model robustness and generalizability, the dataset
was stratified and partitioned into training (70%), valida-
tion (15%), and testing (15%) subsets. Importantly, this
partitioning was subjective, meaning that all segments be-
longing to a specific arrhythmia class from a single patient
record were exclusively allocated to a subset. This careful
separation strategy preserved the original class distribu-
tion, avoiding data leakage and overestimation of results,
common problems when segments from the same patient

Figure 4: Data normalization.
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appear in both the training and testing sets. The detected
arrhythmias, as illustrated in Figure 5, include Normal Beat
(NB, N), Premature Atrial Contraction (PAC, A), Fusion of
Ventricular and Normal Beat (FVNB, F), Fusion of Paced
and Normal Beat (FPNB, f), Left Bundle Branch Block
(LBBB, L), Right Bundle Branch Block (RBBB, R), Pre-
mature Ventricular Contraction (PVC, V), Paced Beat (PB,
/), Aberrated Atrial Premature (AAP, a), and Nodal Escape
Beat (NEB, j).

Figure 5: Example of the generated segments.

2.3. Neural Network Architecture: Train-
ing and Testing

The proposed neural network, illustrated in Figure 6, em-
ploys a sequential architecture with three one-dimensional
convolutional blocks (96, 128, and 256 filters, kernel=10,
stride=1, padding=’same’) interleaved with batch normal-
ization and ReLU, followed by max pooling (window=5);
L2 regularization is applied in the last three convolutional
layers.

Figure 6: Proposed architecture.

A flatten layer is used for vectorization, followed by
two dense layers (128/96 neurons, ReLU + L2), and a fi-
nal softmax layer for multiclass classification. The model
was trained using the Adam optimizer (initial learning rate
= 1e-3) with the categorical cross-entropy loss function,
monitoring the precision, recall and accuracy metrics for
multiclass evaluation. Three essential callbacks were imple-
mented: Early Stopping (patience = 20 epochs) to prevent

overfitting. Learning Rate Scheduler for dynamic adjust-
ment of the learning rate. Model Checkpoint to save the best
model based on the validation loss. The training employed
batches of 512 samples (with shuffle), class weights for
balancing, and lasted a maximum of 100 epochs, using an
independent validation set to ensure model generalization.

3. Results and Discussion

Table 1 shows the results obtained for the classification of
10 classes. The following metrics were obtained: accuracy,
recall,and precision.

Table 1: Comparison of results with works using R-peak-
based segmentation and CNN-1D.

Reference Method Acc.(%) Recall (%) Prec. (%)

Proposed Model 1D CNN, 10 classes
and 216 samples 99.40 99.32 99.40

Acharya et al. [3] 1D CNN, 5 classes
and 260 samples 94.03 96.71 -

Zhou et al. [4] 1D CNN + ELM, 4 classes
and 250 samples 98.77 - -

Ahmed et. al [5] 1D CNN, 4 classes
and 180 samples 99.00 94.00 -

The confusion matrix, shown in Figure 7, evaluates the
performance of the model when comparing the true labels
with the predictions made. The principal diagonal values
represent the correct predictions for each class, while the
secondary diagonal values indicate misclassification.

Figure 7: Confusion matrix with absolute values.

3.1. Grad-Cam Explanation

To enhance interpretability and clinical confidence in
the model’s decisions, the Grad-CAM (Gradient-weighted
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Figure 8: Grad-Cam for NB, PAC, RBBB, PVC, FNVB, FPNB, PB, AAP, NEB and LBBB

Class Activation Mapping) technique was applied [9]. Com-
plementing the numerical performance metrics, Grad-CAM
allows for an in-depth visual analysis, identifying the ECG
signal regions that contributed most to the classification of
each segment. Figure 8 presents the activation maps for
the 10 classes, confirming that the model consistently fo-
cuses on clinically significant ECG regions and has learned
to identify relevant morphological markers. The observed
activation regions were: on the normal QRS for NB; on
the premature P wave for PAC; on the wide QRS and al-
tered repolarization for RBBB; and on the premature, wide
QRS with asymmetric repolarization for PVC. Furthermore,
for FNVB and FPNB, activation occurred in distinct QRS
regions and with intense pre- and post-QRS highlighting,
respectively. For PB, the focus occurred on the pacemaker
spike and the subsequent wide QRS, while for AAP, activa-
tion concentrated on the premature P wave followed by a
wide QRS. Finally, for LBBB and NEB, the focus was on
the wide QRS with ST-T changes and on the escape QRS
with a short or absent PR interval, respectively.

4. Conclusion

The proposed method outperformed the state-of-the-art,
achieving 99.40% accuracy in arrhythmia detection. Grad-
CAM analysis confirmed the model’s ability to precisely
target regions of the heartbeat with class-specific patterns.
The results show that the model effectively generalized the
main features of the heartbeat (P wave, QRS complex, and
T wave), correctly identifying normal and arrhythmic beats.
Grad-CAM consistently aligned with clinical expectations,
improving interpretability and reinforcing its potential as a
reliable diagnostic tool.
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